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Abstract: 

This paper analyzes and compares the properties of the most commonly applied 
versions of the Granger causality (GC) test to a new ridge regression GC test (RRGC), in the 
presence of multicollinearity. The GC test is a very useful and popular tool in business 
research and may be applied on countless number of research areas such as whether 
economic growth causes innovations or if innovations cause economic growth, does growth 
(RGDP) cause cities (ZIPF-index) or do cities cause growth, does improvement of business 
conditions promote the performance of tourism firms or does financial success of tourism 
firms cause the entire business development. In this paper a new and more robust GC test is 
presented due to the fact that it accounts for the empirically common problem of 
multicollinearity. The properties of our new test are systematically analyzed by the use of 
Monte Carlo simulations. A large number of models have been investigated where the 
number of observations, strength of collinearity, and data generating processes have been 
varied. For each model we have performed 10000 replications and studied seven different 
versions of the test. The main conclusion from our study is that the traditional OLS version of 
the GC test over-rejects the true null hypothesis when there are relatively high (but 
empirically common levels of) multicollinearity, while it is established that the new RRGC test 
will remedy or substantially decrease this problem. 
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Introduction 

 The purpose of this paper is to evaluate the effects of multicollinearity on the most 
commonly applied tests for causality in the sense of Granger (1969). The Granger causality 
(GC) test is very useful in business research when we are interested to determine whether 
the variable xt Granger causes yt, if yt Granger causes xt, if there is bidirectional Granger 
causation between xt and yt, or if the variables are totally independent without any dynamic 
association. The central idea that is exploited by the GC test (in a time-series framework) is 
the simple fact that events in the past can cause events to happen today while future events 
cannot, thus, we utilize the fundamental truth that cause precedes effect. 
 In business studies we can for instance statistically test whether economic growth 
causes innovations or if innovations cause economic growth, does growth (RGDP) cause 
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cities (ZIPF-index) or do cities cause growth1, does improvement of business conditions 
promote the performance of tourism firms or does financial success of tourism firms cause 
the entire business development (Chen, Krumwiede, 2005; Chen, 2007). One could also 
analyze whether there are associations between economic growth and trade on tourism 
expansions or how the capital structure and the investments affect firm performance. 
Obviously, it is also possible to solely analyze purely unidirectional relationships too (instead 
of bidirectional relationship) such as for instance how consumer sentiment affects consumer 
spending (see Balaguer and Cantavella-Jordà (2002), Berger and Bonaccorsi di Patti (2006), 
Gelper et al. (2007), Oh (2005), Khan et al. (2005), Qing and Plant (2001)).  
 In practice there may be practical problems of using the Granger causality test since 
there is a high risk of misleading relationships if this tool is not applied accurately or if the 
necessary assumptions are not satisfied. For instance, the dynamic nature of the GC test 
implies that it, by pure definition, generally suffers from considerably high degrees of 
multicollinearity problems, primarily induced by its extensive lag structure. By means of 
Monte-Carlo simulations, it is demonstrated that multicollinearity causes over-rejections of 
the true null hypotheses for the traditional GC tests. As a remedy to this problem, a new 
ridge regression Granger causality (RRGC) test is proposed where ridge regression is used 
instead of ordinary least squares (OLS) to estimate the parameters in the dynamic 
regression model. In comparison to the traditional versions of the GC test, our newly 
proposed RRGC test exhibits superior size properties, which therefore may be considered 
as the main original contribution of this paper. 
 The concept of multicollinearity was first introduced by Frisch (1934) in order to denote 
a situation where the independent variables in the regression model are correlated. Despite 
the fact that high levels of multicollinearity is a very common problem when estimating 
dynamic models, no one (at least to the author’s knowledge) has yet studied the effects of 
multicollinearity on the GC test. The main problem associated to multicollinearity is that it 
leads to instability and large variance of the OLS estimator. This may induce two different 
effects on the GC test which is also illustrated in the simulation section of this paper. Firstly, 
it might lead to a slower convergence rate of the tests based on asymptotic results since 
larger samples are required to obtain stable OLS estimates of the parameters. Secondly, it 
may cause over-rejections of the true null hypotheses in small and moderately sized 
samples regardless whether the tests are based on asymptotic distribution or not. Hence, if 
we apply the traditional GC tests in the presence of multicollinearity we need to obtain very 
large sample sizes, which often is not available in many areas of economics.  
 The method of ridge regression first introduced by Hoerl and Kennard, (1970a,b) is 
nowadays established as an effective and efficient remedial method to deal with the general 
problems caused by multicollinearity. The main advantage of the ridge regression method is 
to reduce the variance term of the slope parameters which is demonstrated in some recent 
papers (see Kibria, 2003; Khalaf and Shukur, 2005; Alkhamisi and Shukur, 2007 and Muniz 
and Kibria 2009). In view of the fact that the simulation results in this paper identified that 
multicollinearity causes severe problems for the traditional GC tests (for empirically relevant 
sample sizes) a new RRGC test is proposed. This method reduces the parameter instability 
and the new versions of the test exhibit superior statistical size properties in comparison to 
the commonly applied GC tests.  
 The paper is organized as follows: In section 2, we describe the GC test and define the 
generalized ridge regression estimator. Subsequently, in section 3, the Monte Carlo design 
is formalized, while in Section 4 we analyze the results obtained from the simulation study. 
Finally, in Section 5 the conclusions of the paper are summarized. 

 

 

 

                                                      
1
 The variables are approximated by gross regional products (GRP) and by the ZIPF agglomeration index.  
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Methodology 

This section describes the testing and estimation methodology. 

Granger causality test 

 The central idea that is exploited by the GC test is the simple fact that events in the 
past can cause events to happen today while future events cannot, thus, we utilize the 
fundamental truth that cause must precedes effect. The GC test for two variables yt and xt 
can be defined as follows. xt does not Granger cause yt, if and only if, prediction of yt based 
on the universe U of predictors is no better than prediction based on U−{xt}, i.e. on the 
universe with xt omitted. According to Granger and Newbold (1986) one can test for Granger 
causality by evaluating a zero restriction in each of the single linear equations in the VAR-
model. This basic method is a very common method of testing for Granger causality in 
empirical works (see e.g. Almasri and Shukur, (2003); and Ramsey and Lampart, 1998) and 
can be explained by considering the following linear regression model: 

 

y = Xβ+u ,         (1) 

where y  is a 1T   vector of observations, X  is a 
 2 1T p 

 matrix of observations of the 

independent variables, β  is a 
 2 1 1p  

 vector of coefficients, p is the number of the 

lagged variables in the VAR(p) model and u  is a 1T   vector of residuals. The coefficient 
vector in expression (1) can be estimated using ordinary least squares (OLS): 

   
-1

β̂ = X'X X'y .        (2) 

In order to test for Granger causality the following linear restrictions should be tested: 
 

0 :H Rβ r
 vs. 1 :H Rβ r

.      (3) 
 

where R is a fixed 
 2 1q p 

 matrix and r is a fixed 1q  vector of restrictions. To test the 
restrictions of expression (3) the following Wald (W), Likelihood Ratio (LR), Lagrange 
Multiplier (LM) and the F-test will be used: 

     1ˆ ˆ

u

T
W

s


 


Rβ -r RXXR Rβ -r

       (4) 

log 1
W

LR T
T

  
   

            (5) 

     1ˆ ˆ

r

T
LM

s


 


Rβ -r RXXR Rβ -r

      (6) 

     1ˆ ˆ

u

F
qs


 


Rβ -r RXXR Rβ -r

       (7) 
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where 
ˆ ˆ

u u us  u u
 and 

ˆ ˆ
r r rs  u u

 are the matrices of cross-products of residuals from the 

unrestricted regression and restricted regression (when 0H
 is imposed), respectively. The 

first three tests are all asymptotically 
 2 q

 distributed while the fourth test is distributed as 

an 
 ,F q 

, where 2 1T p    . Moreover, a small sample correction of the W, LR and LM 

(WC, LRC and LMC) tests is made to the first three tests where T is replaced by .  
 
2.2 Ridge regression 

The effect of multicollinearity between the explanatory variables is that the matrix of cross-

products X'X  is ill-conditioned which leads to instability and large variance of the OLS 
estimates. If this instability is not reflected by an increase in the covariance matrix then the 
traditional GC tests is biased. As a substitute and a remedy to the multicollinearity problems 
induced by the OLS estimator, Hoerl and Kennard (1970a,b) proposed the following ridge 
regression estimator. 

   
-1ˆ kβ = X'X I X'y

,       (8) 
were (k ≥ 0) is the so called ridge parameter. In order to estimate k,  Hoerl and Kennard 
(1970a) suggested the following expression: 

 
2

2

max

ˆ
ˆ

HK

S
k




,          
 

where 
     2 ˆ ˆ' 2 1S n p    y Xβ y Xβ

 and 
2
max̂   is defined as the maximum element of 

ˆγβ   where γ is the eigenvector of X'X . However, in Alkhamisi and Shukur (2007) it is 
illustrated that there are many other superior ways of estimating k. The authors found that 
the following two ridge estimators work particularly well: 
 

2

2
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 
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where 
2
max̂   is defined as the ith element of 

ˆγβ . Other alternative potentially successful 
ridge regression estimators are proposed by Kibria and Muniz (2009): 
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Now, the new RRGC test will be applied using the RR estimators instead of the OLS 

estimator of β . 
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The Monte-Carlo simulation 

The design of the experiment for size calculations 

The data used for the Monte Carlo simulation experiment are replicated according to the 
following data generating processes when the lag length equals two: 
 

1 2 1 1 1

1 2

0.03 0.1 0.08

0.02                                                        

t t t t p t p t

t t t

y y y x x

x x

  

 

   



       


    
 

and the following when the lag length equals four:  
 

1 2 3 4 1 1 1

1 2

0.03 0.1 0.08 0.06 0.04

0.02                                                                                      

t t t t t t p t p t

t t t

y y y y y x x

x x

  

 

     



        


  
. 

 
The focus of this paper is to study the effect of the degree of multicollinearity between lags of 
the x  variables of the GC test. As a first step, in order to evaluate whether the degree of 

multicollinearity has a direct impact on the statistical size of the GC test, and to test whether 
ridge regression is a remedy to this potential problem, we use the following DGPs: 
 

DGP 1:  0 
                                    

DGP 2:  0.8 
 

 

DGP 3:
 
 0.95                                 DGP 4:

 
 0.99 

 
 

It should be stressed that the parameter values are empirically very likely cases in real-world 
economics and they are encountered in many studies (e.g. Almasri and Shukur (2003) and 
Hacker et al. (2010)).

 
Another factor that may have an impact on the GC test is the 

distribution of the error term. In previous research, this is illustrated by for instance Kibria 
(2003) and Alkhamisi and Shukur (2007) who demonstrated that increase in the variance of 
a normally distributed error term will enlarge the problem of multicollinearity. The sample 
size is another relevant factor that is expected to affect the performance of the GC test since 
the Wald, LR and LM tests are based on an asymptotic distribution that often leads to poor 
properties in empirically relevant sample sizes. Another important factor in this context is the 
lag-length specification. It can be expected that estimating more parameters leads to a 
higher probability of rejecting a true null hypothesis. To demonstrate the effects of increasing 
the lag lengths we vary the degrees of freedom (net observations after each regression) 
instead of the numbers of observations since it is well-known that it is the degrees of 
freedom and not the absolute sample size that matters on the performance of the tests. In 
Table 1, the fixed and varying factors that constitute the actual Monte Carlo experiment are 
summarized. 
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Table 1. Values of factors in the experiment 

Factor Symbol Design 

Number of replicates N 10 000 

Degrees of freedom df 15, 25, 50, 100 

Nominal size 
0  5% 

Lag length  p 2, 4 

The distribution of the error 
term 

   0,1N ,  0,10N  

 
The size of the Granger causality test is examined by observing the rejection frequency 

when x  does not Granger cause y . Therefore, the   parameters of the linear regression 

models are set to zero when the statistical sizes of the tests are evaluated. In order to 
evaluate the empirical statistical size of the tests the following confidence interval is 
calculated: 
 

 0 0

0

1
2

N

 



 .       (9)

   
 
If, based on our simulation experiment, the actual statistical size is within the bounds of this 
interval the evaluated test is considered as unbiased (at a specified significance level). 
Throughout this paper we consistently defines biasedness at the 5% level of significance. 

 

The design of the experiment to calculate the power 

When the power is calculated the   parameters in the linear regression models should not 
equal zero since the time series xt should actually Granger cause yt. The chosen parameter 

values of   are defined in following Table 2: 
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Table 2: Values of parameter combinations for the power calculation 

 1  2  3  4  

p = 2 
    

1. very weak causality 0.1 0.05 - - 

2. weak causality 0.2 0.1 - - 

3. strong causality 0.3 0.15 - - 

p = 4     

1. very weak causality 0.1 0.05 0.025 0.025 

2. weak causality 0.15 0.1 0.05 0.025 

3. strong causality 0.25 0.15 0.075 0.05 

 
The number of replicates when calculating the power of the tests equals 1,000.  

 

Results 

 In this section the results from the Monte Carlo experiment are presented. All the 
factors that are varied in the design of the Monte Carlo simulation are expected to have an 
impact on the performance of the tests. We will especially focus on discussing whether ridge 
regression can serve as a small-sample correction of the tests based on asymptotic results 
and to determine whether the new RRGC test is robust to multicollinearity. 
 

The simulation study indicates that applying the RRGC test using the ˆ
ARITHMk , ˆ

NASk  and 

5
ˆ
KMk  as ridge estimator leads to an immense underestimation of the nominal size. Since it is 

of no use to present several tables consisting of almost only zeros the result from the 
statistical size calculation from these estimators are excluded from this paper. Furthermore, 
none of the traditionally applied GC tests, and most of the tests when using ridge regression, 
did not perform well when the data are collinear. The results from these tests are therefore 
only presented when analyzing the statistical size of the tests. When we calculate the tests’s 

statistical power, only the F-test when using 6
ˆ
KMk  will be presented since the other tests 

have extensively biased sizes. Finally there is no effect on the statistical size when the 
variance of the normal distribution is increased. Therefore, we only present the size when 
the error term follows a standard normal distribution. However, full results are available from 
the authors upon request.  

 

Analysis of the statistical size of the Granger causality test 

This section presents the actual sizes of the different Granger causality tests for the different 
DGPs. The actual sizes of the tests are presented in tables 3-6. The confidence interval in 
equation (9) is doubled in magnitude in order to emphasize the pattern of well-performing 
tests more clearly. Therefore, if the actual size of a test exhibits a rejection frequency 
between 0.0413 and 0.0587 it is considered as unbiased, which is marked out as shaded 
cells in the following tables. 
 
The multicollinearity effect  

The effect of increasing the degree of multicollinearity in the linear regression model is that 
the actual size of the tests also increases. For example in Table 3 when using the OLS 
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estimation method then the F-test is has unbiased size in the absence of multicollinearity 
(DGP 1). However, for the other DGPs the F-test tends to over-reject the null hypotheses. 
The other tests that are based on asymptotic distributions are often biased even for DGP 1 
and this bias increases by the degree of multicollinearity. This increase in bias leads to a 
slower convergence rate towards the nominal size. For example, the LM test is unbiased for 
DGP 1 when the sample size equals 50 but when we include multicollinearity in the model 
the test is not unbiased even when the degrees of freedom increase to 100. Thus, when the 
data is collinear we need to have very large sample sizes in order to obtain unbiased test 
statistics if we want to use the OLS to estimate the model. This is true not only for the tests 
based on asymptotic distributions but also for the F-test. On the other hand, when ridge 
regression method is applied the effects of increasing the multicollinearity decreases, 

especially for 4
ˆ
KMk  and 6

ˆ
KMk . For these estimators the bias of the tests based on asymptotic 

distributions actually decreases as the degree of multicollinearity increases. However, these 
tests are still severely biased and should, therefore, not be used. Instead, when the 

explanatory variables are highly correlated we recommend the F-test based on 6
ˆ
KMk  as 

ridge estimator to test for the Granger causality. For DGP 2, DGP3, and DGP 4 this test is 
almost always unbiased. 
 
The lag-length effect  

As previously mentioned, instead of considering the sample size, the tests’ statistical sizes 
are evaluated with regards to the degrees of freedom for different models with various lag 
lengths. In this context, using OLS as estimation method, increasing the lag length does not 
cause any problems for DGP 1 for the F-test. However, the bias increases for all DGPs for 
the tests based on asymptotic distributions. This is also the case for the small-sample 
corrected of W, LR and LM tests. For the W test, the over-rejection increases while for the 
LR and LM tests the under-rejection of the nominal size increases. In addition to the above 
effects, there is also an interaction effect between increasing the lag length and the degree 
of multicollinearity. The problem caused by multicollinearity increases as the lag length 
increases for all estimation methods.  
 
The degrees of freedom effect  

When increasing the degrees of freedom, the actual size becomes substantially closer to the 
nominal size, which is especially true for the tests based on asymptotic distributions. 
However, even for DGP 1 when using small sample corrections of the W and LM tests the 
actual size is always biased when we have access to less than 50 degrees of freedom. The 
LRC and LRE are then superior options. However, when xt is purely random then it is better 
to use the F-test than the tests based on the asymptotic distribution. For all DGPs when the 
new RRGC test is used, the bias of the tests based on asymptotic distribution slightly 
decreases but it is still non-ignorable.  
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Table 3: OLS 

p= 2 W LR LM WC LRC LMC F 

DGP 1
 

       

15 0.1481 0.1080 0.0681 0.0807 0.0473 0.0172 0.0464 

25 0.1090 0.0874 0.0651 0.0718 0.0501 0.0297 0.0504 

50 0.0771 0.0656 0.0556 0.0584 0.0491 0.0394 0.0480 

100 0.0632 0.0595 0.0546 0.0560 0.0508 0.0458 0.0487 

DGP 2
 

       

15 0.1858 0.1419 0.0952 0.1090 0.0691 0.0255 0.0677 

25 0.1265 0.1027 0.0769 0.0840 0.0633 0.0399 0.0656 

50 0.0874 0.0767 0.0663 0.0690 0.0586 0.0488 0.0654 

100 0.0711 0.0656 0.0609 0.0626 0.0575 0.053 0.0640 

DGP 3
 

       

15 0.1988 0.1524 0.0963 0.1134 0.0697 0.0274 0.0697 

25 0.1385 0.1117 0.0848 0.0932 0.0706 0.0502 0.0706 

50 0.0969 0.0861 0.0755 0.0789 0.0684 0.0555 0.0684 

100 0.0743 0.0699 0.0637 0.0656 0.0602 0.0552 0.0602 

DGP 4
 

       

15 0.1995 0.1538 0.1020 0.1160 0.0716 0.0281 0.0708 

25 0.1365 0.1102 0.0831 0.0912 0.0679 0.0447 0.0694 

50 0.0966 0.0831 0.0732 0.0764 0.0659 0.0548 0.0697 

100 0.0726 0.0681 0.0633 0.0640 0.0598 0.0555 0.0613 

p=4 W LR LM WC LRC LMC F 

DGP 1
 

       

15 0.3202 0.2168 0.1011 0.1088 0.0355 0.0002 0.0487 

25 0.1977 0.1366 0.0783 0.0833 0.0411 0.0111 0.0492 

50 0.1046 0.0818 0.0596 0.0615 0.0442 0.028 0.0471 

100 0.0767 0.0667 0.0577 0.0583 0.0484 0.0394 0.0505 

DGP 2
 

       

15 0.3733 0.2681 0.1278 0.1404 0.0507 0.0026 0.0655 

25 0.2338 0.1654 0.0950 0.1021 0.0536 0.0158 0.0625 

50 0.1293 0.1033 0.0765 0.0792 0.0549 0.0346 0.0595 

100 0.0891 0.0744 0.0613 0.0628 0.0532 0.0442 0.0551 

DGP 3
 

       

15 0.3992 0.2909 0.1467 0.1611 0.0615 0.0072 0.0710 

25 0.2528 0.1881 0.1149 0.1220 0.0681 0.0233 0.0779 

50 0.1451 0.1174 0.0910 0.0921 0.0679 0.0459 0.0745 

100 0.0900 0.0778 0.0667 0.0673 0.0590 0.0477 0.0611 

DGP 4        

15 0.3935 0.2861 0.1398 0.1527 0.0521 0.0041 0.0708 

25 0.2527 0.1881 0.1175 0.1245 0.0691 0.0194 0.0803 

50 0.1378 0.1101 0.0812 0.0838 0.0648 0.0396 0.0701 

100 0.0880 0.0758 0.0643 0.0651 0.0573 0.0475 0.0587 

Shaded cells indicate reasonable results. 
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Table 4: Ridge parameter estimated using 
ˆ

HK
k

 

p= 2 W LR LM WC LRC LMC F 

DGP 1
 

       

15 0.0954 0.0697 0.0348 0.0513 0.0300 0.0083 0.0464 

25 0.0587 0.0450 0.0270 0.0356 0.0252 0.0145 0.0454 

50 0.0372 0.0317 0.0248 0.0281 0.0246 0.0177 0.0437 

100 0.0263 0.0244 0.0216 0.0233 0.0213 0.0183 0.0437 

DGP 2
 

       

15 0.1516 0.1138 0.0664 0.0861 0.0510 0.0170 0.0643 

25 0.0969 0.0776 0.0545 0.0633 0.0473 0.0270 0.0651 

50 0.0602 0.0517 0.0430 0.0464 0.0406 0.0318 0.0580 

100 0.0415 0.0376 0.0333 0.0351 0.0326 0.0287 0.0326 

DGP 3
 

       

15 0.1819 0.1397 0.0848 0.1036 0.0599 0.0201 0.0599 

25 0.1151 0.0947 0.0695 0.0791 0.0573 0.0344 0.0573 

50 0.0790 0.0704 0.0601 0.0647 0.0536 0.0438 0.0536 

100 0.0629 0.0588 0.0535 0.0551 0.0506 0.046 0.0506 

DGP 4
 

       

15 0.1838 0.1403 0.0896 0.1043 0.0660 0.0232 0.0744 

25 0.124 0.0982 0.0728 0.0815 0.0608 0.0383 0.0709 

50 0.0821 0.0712 0.0619 0.0648 0.0556 0.0477 0.0622 

100 0.0671 0.0622 0.0576 0.0591 0.0543 0.0495 0.0607 

p=4 W LR LM WC LRC LMC F 

DGP 1
 

       

15 0.2441 0.1657 0.0634 0.0862 0.0281 0.0000 0.0374 

25 0.1247 0.0884 0.0406 0.0548 0.0258 0.0046 0.0313 

50 0.0554 0.0426 0.0278 0.0329 0.0229 0.0119 0.0252 

100 0.0326 0.0277 0.0195 0.0226 0.0184 0.0125 0.0190 

DGP 2
 

       

15 0.2809 0.2032 0.0769 0.1013 0.0321 0.0000 0.0441 

25 0.1892 0.1360 0.0743 0.0849 0.0420 0.0091 0.0510 

50 0.0997 0.0786 0.0535 0.0581 0.0420 0.0249 0.0459 

100 0.0595 0.0505 0.0412 0.0434 0.0366 0.0282 0.0380 

DGP 3
 

       

15 0.3568 0.2528 0.1190 0.1336 0.0459 0.0002 0.0640 

25 0.1982 0.1403 0.0816 0.0904 0.0469 0.0110 0.0548 

50 0.1115 0.0873 0.0625 0.0671 0.0487 0.0312 0.0525 

100 0.0722 0.0623 0.0521 0.0540 0.0454 0.0376 0.0472 

DGP 4
 

       

15 0.3800 0.2748 0.1311 0.1474 0.0473 0.0002 0.0643 

25 0.2421 0.1713 0.1040 0.1116 0.0588 0.0161 0.0686 

50 0.1362 0.1079 0.0818 0.0852 0.0608 0.0387 0.0655 

100 0.0871 0.0756 0.0655 0.0664 0.0543 0.0430 0.0572 

Shaded cells indicate reasonable results. 
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Table 5: Ridge parameter estimated using 4
ˆ

KM
k

 

p= 2 W LR LM WC LRC LMC F 

DGP 1
 

       

15 0.1450 0.1050 0.0640 0.077 0.045 0.0120 0.0465 

25 0.1061 0.0854 0.0624 0.0698 0.0486 0.0296 0.0500 

50 0.0775 0.0665 0.0565 0.0601 0.0519 0.0410 0.0530 

100 0.0651 0.0610 0.0561 0.0577 0.0528 0.0473 0.0501 

DGP 2
 

       

15 0.1724 0.1285 0.0743 0.0944 0.0544 0.0139 0.0583 

25 0.1239 0.0975 0.0706 0.0795 0.0585 0.0377 0.0569 

50 0.0815 0.0713 0.0610 0.0641 0.0540 0.0450 0.0559 

100 0.0693 0.0639 0.0587 0.0606 0.0557 0.0513 0.0575 

DGP 3
 

       

15 0.1653 0.1255 0.0690 0.0919 0.0516 0.0125 0.0516 

25 0.1248 0.0991 0.0735 0.0824 0.0630 0.0364 0.0630 

50 0.0910 0.0787 0.0669 0.0704 0.0603 0.0494 0.0603 

100 0.0700 0.0641 0.0596 0.0610 0.0558 0.0513 0.0558 

DGP 4
 

       

15 0.1360 0.1004 0.0514 0.0717 0.0415 0.0084 0.0369 

25 0.1169 0.0908 0.0646 0.0748 0.0526 0.0302 0.0561 

50 0.0854 0.0743 0.0631 0.0675 0.0577 0.0468 0.0592 

100 0.0655 0.0602 0.0550 0.0575 0.0519 0.0482 0.0576 

p=4 W LR LM WC LRC LMC F 

DGP 1
 

       

15 0.3073 0.2112 0.0832 0.1019 0.0284 0.0000 0.0406 

25 0.2039 0.1419 0.0760 0.0821 0.0414 0.0085 0.0491 

50 0.1117 0.0870 0.0642 0.0664 0.0437 0.0275 0.0485 

100 0.0786 0.0689 0.0584 0.0595 0.0494 0.0386 0.0518 

DGP 2
 

       

15 0.3483 0.2440 0.0950 0.1219 0.0349 0.0000 0.0481 

25 0.223 0.1591 0.0944 0.1010 0.0531 0.0120 0.0640 

50 0.1213 0.0961 0.0696 0.0721 0.0504 0.0325 0.0557 

100 0.0876 0.0770 0.0636 0.0654 0.0543 0.0444 0.0563 

DGP 3
 

       

15 0.3498 0.2413 0.0883 0.1206 0.0335 0.0000 0.0483 

25 0.2261 0.1595 0.0887 0.0968 0.0486 0.0108 0.0593 

50 0.1226 0.0963 0.0717 0.0744 0.0516 0.0309 0.0547 

100 0.0846 0.0744 0.0649 0.0663 0.0554 0.045 0.0574 

DGP 4
 

       

15 0.3175 0.2118 0.0646 0.0980 0.0263 0.0000 0.0383 

25 0.2256 0.1597 0.0869 0.0982 0.0490 0.0093 0.0575 

50 0.1354 0.1061 0.078 0.0814 0.0561 0.0342 0.0617 

100 0.0911 0.0779 0.0664 0.0678 0.0585 0.0478 0.0607 

Shaded cells indicate reasonable results. 
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Table 6: Ridge parameter estimated using 6
ˆ

KM
k

 

p= 2 W LR LM WC LRC LMC F 

DGP 1
 

       

15 0.1405 0.1048 0.0636 0.0783 0.0441 0.0127 0.0420 

25 0.1021 0.0800 0.0591 0.0671 0.0458 0.0264 0.0494 

50 0.0734 0.0651 0.0543 0.0582 0.0473 0.0365 0.0487 

100 0.0666 0.0622 0.0569 0.0590 0.0536 0.0487 0.0491 

DGP 2
 

       

15 0.1791 0.1336 0.0783 0.0974 0.0554 0.0169 0.0584 

25 0.1219 0.0978 0.0703 0.0794 0.0557 0.0342 0.0573 

50 0.0879 0.0780 0.0680 0.0711 0.0599 0.0486 0.0568 

100 0.0677 0.0624 0.0573 0.0592 0.0546 0.0499 0.0519 

DGP 3
 

       

15 0.1596 0.1171 0.0622 0.0852 0.0482 0.0125 0.0482 

25 0.1249 0.1017 0.0739 0.0848 0.0602 0.0368 0.0572 

50 0.0868 0.0765 0.064 0.0683 0.0559 0.0462 0.0559 

100 0.0720 0.0669 0.0621 0.0639 0.0594 0.0537 0.0594 

DGP 4
 

       

15 0.1349 0.0916 0.0424 0.0644 0.0350 0.0056 0.0389 

25 0.1133 0.0897 0.0619 0.0736 0.0525 0.0289 0.0548 

50 0.0885 0.0777 0.0664 0.0697 0.0584 0.0467 0.0585 

100 0.0742 0.0699 0.0655 0.0666 0.0621 0.0565 0.0567 

p=4 W LR LM WC LRC LMC F 

DGP 1
 

       

15 0.3061 0.2086 0.073 0.0955 0.0242 0.0000 0.0456 

25 0.1909 0.1310 0.0758 0.0819 0.0408 0.0088 0.0483 

50 0.1172 0.0904 0.0635 0.0647 0.0437 0.0265 0.0477 

100 0.0764 0.0662 0.0551 0.0565 0.0461 0.0392 0.0478 

DGP 2
 

       

15 0.3416 0.2339 0.0818 0.1121 0.0337 0.0001 0.0459 

25 0.224 0.1609 0.0900 0.0977 0.0481 0.0122 0.0570 

50 0.1249 0.0991 0.0716 0.0748 0.0525 0.0317 0.0576 

100 0.0811 0.0702 0.0604 0.0613 0.0518 0.0420 0.0548 

DGP 3
 

       

15 0.338 0.2272 0.0690 0.1081 0.0270 0.0000 0.0446 

25 0.2182 0.1509 0.0815 0.0911 0.0422 0.0092 0.0512 

50 0.1179 0.0910 0.0684 0.0708 0.0501 0.0320 0.0543 

100 0.0889 0.0760 0.0651 0.0663 0.0551 0.0447 0.0574 

DGP 4
 

       

15 0.3018 0.1964 0.0517 0.0908 0.0220 0.0000 0.0329 

25 0.2352 0.1677 0.0908 0.1048 0.0518 0.0093 0.0572 

50 0.1354 0.1062 0.0784 0.0814 0.0564 0.0349 0.0587 

100 0.0871 0.0773 0.0651 0.0664 0.0551 0.0467 0.0579 

Shaded cells indicate reasonable results. 
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Analysis of the statistical power of the Granger causality test 

 The analysis of the power of the test is of central importance since a test will be of little 
use if it does not have enough power to reject a false null hypothesis. However, in the 
simulation part of this study it is detected that most applied tests in previous research suffer 
from serious size distortions for DGP 2 to DGP 4. Since it is meaningless to compare the 
power of biased test to power of unbiased tests, the power functions are only illustrated for 
tests that generally are unbiased in most of the cases. Thus, the power is only calculated 
when the parameters of the regression model is estimated using KM6 as ridge estimator 
together with the F test. In Figure 1 the power of the test when the lag length equals to two is 
showed and in Figure 2 we display the power when the lag length equals four. The most 
important factors for the power of the test are the degree of correlation, the sum of the 
causality parameters, the sample size and the lag length. All of those individual factors have 
positive impact on the power functions. Thus, the power becomes higher as any of these 
factors increases. The most remarkable positive effect has the degree of correlation. It is 
clear from the power functions that the new test is useful in the presence of multicolinearity. 

 

  

  

Figure 1: Power of the F test using KM6 as ridge estimator when the lag length 
equals 2. 
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 Figure 2: Power of the F test using KM6 as ridge estimator when the lag length 
equals 4. 

 

Conclusions 

This paper concludes that the traditional forms of the Granger causality test method over-
reject the true null hypothesis in the presence of multicollinearity. A new test named Ridge 
Regression Granger Causality (RRGC) test is suggested as a remedy to the problem. In 
order to compare the properties of all the Granger causality tests in this study a simulation 
experiment is conducted. The factors varied in the Monte Carlos simulation are the sample 
size, the lag length of the dynamic regression model and the degree of multicollinearity. For 
every applied DGP the performance of Wald (W), LR, LM, WC, LRC, LMC and the F-test are 
investigated when the regression model is estimated by OLS in comparison to ridge 
regression. The result of the analysis confirms that increasing the lag length or the degree of 
multicollinearity have a negative impact on the statistical size of the Granger causality test 
while increasing the sample size has a positive impact. The optimal method is to estimate 
the regression model by the use of KM6 as ridge estimator and by testing for Granger 
causality using the F-test. Thereafter, the power of the best test is calculated. The main 
factors that have an impact on the power of the test are the sum of the causality parameters, 
the sample size the lag length, and the degree of multicollinearity. A high value for these 
factors leads to higher power of the test. The main conclusion and essentially unique 
contribution of this paper is that multicollinearity causes over-rejections of the true null 
hypotheses for the traditional GC test and that the RRGC test can be used instead of 
traditional GC methods to gain control of the over-rejection of the null hypotheses in the 
presence of multicollinearity.  
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